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OF RAYLEIGH-STOKES PROBLEM WITH FRACTIONAL

DERIVATIVES
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ABSTRACT. In this study we approximate the solution of two dimen-
sional Rayleigh-Stokes problem for a heated generalized second grade
fluid with fractional derivatives. This approximation is based on radial
basis functions (RBFs) and the Sinc quadrature rule to approximate the
integral part of fractional derivative. The error analysis of the scheme
have been studied and discussed. The illustration example verifies the
effectiveness of our method and shows that one can obtain accurate
results with a small number of basis functions.
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1. INTRODUCTION.

The models of fractional equations have been araised in many fields of
science and engineering. Historical and theoretical aspects of fractional cal-
culus were studied in [1, 2, 3] and the large number references there in. There
are many text books related to the application of fractional equations, such
as Control theory [4], Biology [5], Chemistry [6], Engineering [7], Physics
[8], Continuum Mechanics [9] and many other applications [10, 11]. A brief
historical introduction to fractional calculus is given in [12].
Here we consider the two dimensional Rayleigh-Stokes problem with frac-
tional derivative for heated generalized second grade fluid

(1)

du(zy,t) _  pl-y [Pu@yt) | 02u(zy.t)
ot =oDy Frvanin G

Puy,t) | 0*ulzy, ‘
+ ua(;ny t) + ua(;/ch t) + f(x7ya t)7 0 <t S T7 (x,y)

with boundary conditions

(2)

u(z,y,t) = wi(z,y,t), (z,y) € 90

and initial condition

(3)

uw(z,y,0) = wa(z,y), (z,y) € Q.

€,

where Q = [a,b] X [¢.d], 0 < v < 1 and oD, "u(z,y,t) is the Riemann-
Liouville fractional derivative of order 1 — v which is defined by

(4)
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ODtl ’Yu(x, Y, t) = 50—’?“(% Y, t)a



100 J. Rashidinia, A. Parsa and R. Salehi

where oI is the fractional integral operator,

7)17’

t
(5) ol u(z,y,t / w@,y. T
0

The Rayleigh-Stokes problem is a model of non-Newtonian behavior exhib-
ited by certain fluids, the flow characteristics of non-Newtonian viscoelastic
fluids through a dual porous medium [13] and the flow analysis of fluids in
fractal reservoir with fractional derivative [14].

The Rayleigh-Stokes problem for a heated second grade fluid investigated
n [15, 16]. The Fourier sine transform and the Laplace transform used in
[17, 18, 19, 20, 21] for solution of the Rayleigh-Stokes problem.

Several methods applied to approximate the solution of problem (1)-(3),
such as the explicit and implicit finite difference method [22, 23, 24, 25, 26],
the Fourier sine and the Laplace transform [27] and RBF meshless method
[28].

The fractional derivatives and fractional integrals are special form of Abel’s
type of integrals, having weak singularity, for such type problem, the Sinc
methods are quite effective. Okayama et al. [29] developed two new Sinc
scheme based on single and double exponential transformation for fractional
derivatives. They used these methods to solve the linear Fredholm integral
equations of the second kind with weakly singular kernel [30], the results
are very accurate for large numbers of SE-Sinc collocation points and small
numbers of DE-Sinc points. In fact, the authors in [29, 30, 31] took the idea
that was presented by Riley [32] to develop the techniques in Sinc meth-
ods to approximate the solution of the second kind weakly singular linear
Volterra integral equations. Okayama et al. [29] proposed two new approx-
imate formula for Caputo’s fractional derivatives of order 0 < « < 1, based
on both SE-Sinc and DE-Sinc methods.

Baumann and Stenger [33] provided a survey of application of Sinc methods
to solve fractional integral, fractional derivatives, fractional equations and
fractional differential equations.

In this study we approximate the solution of the problem (1)-(3) by using
RBF collocation method and double exponential (DE) Sinc quadrature rule.
This paper is organized as follows. In section 2, we review the RBFs approx-
imation method. In section 3, some properties of Sinc function is given. In
section 4, we develop the collocation method based on Multiquadrics RBF
and DE-Sinc quadrature rule. The error analysis of the proposed method
is given in section 5. In section 6, an illustrative example is given. Finally
some concluding remarks are given in section 7.

2. RBFS APPROXIMATION METHOD

The radial basis functions (RBFs) are functions that depend on the dis-
tance from some center points, that is reducing the higher dimensional space
problem to lower dimension [34, 35, 36, 37, 38, 39].
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TABLE 1. Some well-known RBFs

Name o(r)

Thin plate splines(TPS) o(r) =r*Plogr, BEN
Multiquadrics(MQ) o(r) = (r?+ 02)%
Inverse multiquadrics(IMQ)  o(r) = (r? 2—&— 02)%1
Gaussians(GAU) o(r) = e

Odd degree splines o(r)=7r% B>0, ¢2N

The approximate expansion of u(x) can be obtained by

(6) u(x) =Y dip(|[xi = x[ly) = > digi(r)
i=1 1=1

wherex;, i=1,2,.., N are center points, the |.||, is the Frobenius norm, d;
are unknown coefficients and ¢ are RBF functions. There are several kinds
of RBF's, some of them presented in Table 1, where c¢ is the shape parameter
which takes the arbitrary values. The Multiquaric radial basis function
was introduced for solution of partial differential equations by Kansa. The
exponential convergence of RBF have been studied by [37, 38, 39]. Here we
use Multiquadrics basis function.

3. SINC FUNCTION

In this section, we review some properties of Sinc function, Sinc inter-
polation and Sinc quadrature [40, 41, 42, 43, 44] that we need. The Sinc
function is defined by

sin(rt)
Sine(t) z{ 1 mt ’tfgo .

Let 7 be an integer and h be a positive number, the jth shifted Sinc function
is defined by

. _ t—jh
S(5, h)(t) = Sinc(

).

Since major of problems are defined over a finite interval (a, b), we need the
transformation that maps a finite interval (a,b) to R. Here we use double
exponential transformation [31, 43, 44, 45, 46], as follows

—a b+a

b
b= =

and its inverse function define by

tanh(gsinh(z)) +

— (yDEY-1(y — 4DE(y _ 1, t—a 1, t—a)\’
2= 0P 0) = 8DE (W) = og | Hog(-=) + /14 (Liog =)} |

that we can define Sinc points as tPF = PP (kh).
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Definition 3.1. Let D be a simple connected domain and (a,b) C D and let
B > 0. The family of all analytic functions on D denotes Lg(D), and for all
2 € D and a positive constant k, f(z) satisfies: | f(2) |< k| (z—a)(z2—b))? |

Let f(t) be the analytic function on a strip domain Dy = {z € C |
Im(2) |< d} for some d > 0, and should be bounded in some sense.
When in corporate with DE transformations, the condition should be con-
sidered on the translated domain

T b—t

1 t— 1 t— 2
The truncated Sinc quadrature rule can be defined by

(7) /f dt—hZf SR (),

j=—M

Following [29], if (f/#'PF) € Lg(z/)(ff(Dd)) for 0 < d < 7, then there exist
constants K1 > 0 independent of M, such that

- P Z Py (RhPE) () (KRVF)

—2rdM
< Kjexp @ )

log(2)

DE _
where h = —

4. THE COLLOCATION METHOD BASED ON RADIAL BASIS FUNCTION AND
DOUBLE EXPONENTIAL SINC QUADRATURE RULE

In this section we develop our collocation method based on multiquadrics
radial basis function for spatial and temporal variables in the equations (1)-
(3). The solution of equations (1)-(3) can be approximated by

9) (,y,t) de

where

(10)

Lpi(T') - \/(I - xp)2 + <y - yq)2 + (t - tZ)Q + 023 P,z =1, 27 <y Ty N = n37

where the step size and grade points of spatial variables and time variable
are defined by

hy = 2= h, hy =L 2y = (p— Dha,yy = (g — Dhy,t. = (2 — L)hy.

nfl’ n—17

Now we approximate the integral part of fractional derivative in (4) by
means of the DE-Sinc approach. By the change of variable s = 1/)0%15 (1),
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first we transform the given interval (0,¢) to R, then the integral ,I; [¢](t)
for a given function ¢(t) can be approximated as follows

oI} [9)(t) = 5 Jy = ds
o oo meosh(rg(WPE(D)
= W f_oo (1+€—7rsinh(7))(1j_;ﬂsinh(r)).Y dTa

(11)

by applying the quadrature rule (7) we have
(12)

M
i o mwcosh(kh)g (g/} E(kh))
o/ l9)(t) = Iy [g)(t) = <= —=h > “rsinh(kh R(kR) Yy’
I'(v) Wy (L e ( ))(1+emm (kh))y
2dM
where h = 7109(1\{5 )

Applying the operator oI} defined on (12) and using series (9), we can
estimate the fractional derivative of the equation (1) as

d

_ d
oD (Du(z,y, 1)) = (off [Au)) = £z (ZHF[Au))
_ ncosh(kh)d; Ap;(rFh)
(13) B kZM Zl (1 + e—msinh(kR)) (1 + emsinh(kh))Y |’
where

(z—2)? + (y — yp)® + 2 PF (kh) — tg)* + 2c‘f‘ _
(@ — 22 + (y — yp)? + WPE(KR) — )2 + )3

Now by substituting (9) and (13) in equation (1) and using collocation points

(14) At =

(15) Tj = (Iplqu’7tzl)1 zlvplaq,: 132a“7n
we have
(16)
N M N
({ty—tz) _ h |4 rcosh(kh)d; Ap; (r*h)
121 di wi(r;) T [dt <ﬂ 7ZMZ¥1 (14e— mnh(kh>)(1+e'“"”(’“h))’)]
= M= y
+ 2 A%’L(TJ) + f(xp s Yg' bz )
¢ =23,.,n—1 2 =23,.
Now for boundary conditions (2) we have
N
(17) Zdl(pl(r]) = wl(-rplqulvtz')a (‘rp’v yq') € 89? Z/ = 2¢37 w1y
i=1

also for initial condition (3) we have
(18)
N o X
2 dipi(r]) = 5 din/(p — 2p)* + (yg — yg)* + 13 + & = walay, yg ),
1= i=
p,d =12 ..n

The system (16) associated with (17) and (18) yield the system of N equa-
tions and N unknown d;. By solving this system and substituting the un-
known coefficients in (9) we can approximate the solution of equation (1)-
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3).

5. ERROR ANALYSIS

In this section we give an error bound for RBF collocation method that
presented in sections 4. The error analysis in this section can be discussed by
using ideas in [36] and by assuming that ¢ is conditionally positive definite
of order m. Suppose further that  C R? is bounded and satisfies an interior
cone condition. Let f(z) interpolated by ¢ and satisfied |f(’)(r)| < 1KY for
all r € [0, 00], where Ky > 0 and fix a € N§, for every | € N,1 > maz{| « |
,m — 1} there exist positive constants h, K3, K4, K5 such that

(19) £(@) = Syx (@) < Kae™ 7,
and
D% f(x) = DSy x ()] < Ksh' ™| fl 0,
where N, is a Hilbert space corresponding to .
Now to prove the next theorem first we need to define the following Sobolev

spaces

Wh(Q) = HY(Q) = {w € L*(Q): ‘;—w € LZ(Q)} .

X

The inner products and norms in L?(Q) are defined as

(w,u) = / wud®, ol = (w,w)d,  [ull, = (Vw, Vo),
Q

and H} () is the space of functions in H'(f2) that vanish at the boundary.
The Sobolev weighted norm on the H{} () space is defined by

1
2

: 2
il = ([ (il + €19 wP) d2) " = (Jul? + el?)
where © is positive constant.

Theorem 5.1. The solution of Rayleigh-Stokes problem (1)-(3) has been ap-
prozimated by u(x, y,t), using the collocation method based on RBF. Assume
that u*(x,y,t) is the computed solutions of the arising systems (16)-(18),
then the error bound of the RBF collocation method is given by:

Kp,
lu(@, y,t) —u* (2,9, )| < Kpye” n .
Proof 5.1. At first, we consider the following relation
(20)
|’LL(SL’, Y, t) - u*(x, Y, t)‘ < \u(x, Y, t) - 'ﬁ(l’, Y, t)| + ‘ﬂ(l’, Y, t) - U*(Iv Y, t)‘
from (19) we have

K
(21) lu(z, y,t) — a(z, y,t)| < Kse 7.
To determine the second term of (20), by substituting a(z,y,t) and u*(x,y,t)
in equation (1) and subtracting we have
OEs(t)

(22) Ey (X) ot

= oD} "Ey(t)AE(X) + E2() AE(X) + F(z,y,t),




Sinc and radial basis functions for solution of Rayleigh—-Stokes problem

where
‘T_L(I, y7t) - U’*(I7y7 t)' = E(l’, y7t) = El(xay)EQ(t) = El(X)EQ(t)a
and

Fa,y,t) = | f(z,y,t) = f(z,9,1)].

Multiplying both side of equation (22) by E(X, t) = E1(X)Ex(t) and inte-
grating over Q x [0,T], we obtain
(23)

IB? [ 250 Ealt)it — (2017 Ba(o) Ea()) (A1 (X),B1 (X))
+Bo|® (AEN(X), Er(X)) + (F, Ex(X)Exa(t)

Since Eo(t) € Hg then E2(0) = Eo(T) = 0 and the left hand side of equation
(23) is vanished, and also oD, " Ea(t) = § D}~V Ey(t) then we have
(24)

T t
0E2 y+1
(OD ’YE2 //E2 /aT)d dt < T
0 0

2
o ST +2) £,

by substituting (24) in (28) we obtain
(25)
T7+1

0< NCE)) B2} (AEL(X), E(X)) + || E2||* (AEW(X), Ex(X)) + (F, E1(X) Ea(t))

T 2 2 2 2
EYCED)] BT BT = 1B 1Bl + (F, E1(X)Ea(t)) ,

and using the Poincare inequality

1Bl <

we obtain

T'y+1

1 2 2
I8, B N ™ + T +2)

BT Bl < (F, Bu(X) Ea(1))

then

+1
1B | B2l + 5y I BT 1Bl

(712 (CF, Er(X)Ea(t))

2 2 2 2
SIFIP + LB B>

N IN

Finaly we have

1 K
(26) Bl = (EPIEN® + € | Brll | Ball)? < CIIF| < Koe™ 7

_ 20Tt
where @ = W
Setting Kp, = K3 + K¢ and Kgr, = min{K4, K7} the proof can be com-

peleted.
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6. ILLUSTRATE EXAMPLE

The above developed method applied on an example to test the efficiency
and accuracy of the purposed method.
We consider the following initial-boundary value problem

Ou(z,y,t 1— [0%u(z,y,t 82u(z,y,t A2u(z,y,t A2u(z,y,t
u(aty) :thv[ Engy)+ ((gy)}_k “,(_2y)+ (z.y,1)

Jdy ox 0y?
Tty [(1 + )t — 2R 2t1+7] 0<zy<1,0<t<l

and
w(0,y,t) = e/t' 7, u(l,y,t) = e TV,
u(z,0,t) = et wu(x,1,t) = et Tty
u(z,y,0) =0,

with the exact solution

u(z,y,t) = TVt
Collocation method (16) associated with boundaries (17) and (18) is applied
log(2aM
on the above example, with M = 20,d = %,u = min{y,1},h = Og(M“ ),
and also by choosing various values of h, = hy = hy = %, %, vy %, various

values of v = 0.15,0.5,0.7,0.8,0.9 and different values of shape parameter
c.

The maximum absolute error in the solution are tabulated in Tables 2 and 3.
Where in the tables E, for RBF collocation and DE-Sinc quadrature method
define as

— _ *
Eoo = max max max {[u(zp,yg, t:) = u(zp, yg t:)l}

where u*(z,y,t) is approximation solution of u(x,y, t).

TABLE 2. Error of the RBF collocation and DE-Sinc quad-
rature method with M = 20

S =015 =05
F c Fs C

6.3897 x 107% 3.5 1.9874 x 1074 2.9

hy =

I
o

8.9968 x 107% 4.2 9.7772x 107* 2.5
4.8106 x 107* 2 1.9155 x 1074 2.2
1.5590 x 1074 2 4.6520 x 10°* 2
8.0221 x 107° 1.5  3.8226 x 107° 3.1
39522 x 107° 1.5 85025 x10°° 3
1.5428 x 1075 2 2.6742 x 107° 2.8

PO 1| O | =T i | 0o | 0 | S

Tables 2 and 3 show that by using the method based on RBF and DE-Sinc
method in (16)- (18) with few number of basis functions (small values of N
and M), one can obtain good results.
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TABLE 3. Error of the RBF collocation and DE-Sinc quad-
rature method with M = 20

v =0.7 v=0.8 v=10.9
Eoo c Eoo C Eoc C

3.2564 x 1073 2.8 9.2532 x 1073 2.8 1.9387 x 1072 3

>
8
Il
I
>
S

3.2400 x 1073 1.5 7.6902x 1072 1.5  6.8439x 1072 1.5
8.6942 x 107 2 42834 %1073 29  9.7195x 1073 2.5
74627 x 107* 1.5 22732x 107* 3 9.5185 x 1073 2.5
45463 x 107* 2.5 57210 x 107* 2 45345 x 1073 2
9.8060 x 107° 3.1  6.7349x 107° 22 24684 x 107* 2
3.9089 x 107 2 3.8371x107° 1.8 17207 x10°* 2

PO 1| Oy | | =i | 0 | 0| H S

00 B
[’
0.005 }

0.000 1

o
00

FIGURE 1. Graphs of approximate solution (left panel) and
resulting error (right panel) using RBF collocation and DE-
Sinc quadrature method at ¢ = 1 with v = 0.7, h; = hy =
hy = % and ¢ = 2.5.

)

0.0

0.0001 ¢
b

0.0000 1
T

~0.0001 |
i .

—oo002t -7
1%

00 e

FIGURE 2. Graphs of resulting error using RBF collocation
and DE-Sinc quadrature method with v = 0.15, hy = b,
hy = % and ¢ = 1.5 (left), and with v = 0.9, hy = hy = hy =
and ¢ = 1.5 (right).

o= ||

Fig. 1 shows the graphs of approximate solution and resulting error in
the test problem using RBF collocation and DE-Sinc quadrature method at
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t=1withy=0.7hy =hy=h, = % and ¢ = 2.5. Fig. 2 shows the graphs
of resulting error using RBF collocation and DE-Sinc quadrature method at
t =1 with v = 0.15,h; = hy = h, = £ and ¢ = 1.5 (left), and also with
7 =09,hy =hy=h; =% and ¢ = 1.5 (right).

7. CONCLUSION

Our presented method are capable to approximate the solution of the two
dimensional Rayleigh-Stokes problem with fractional derivative for heated
generalized second grade fluid using combination of Sinc and RBF method.
This method is applicable and efficient and can be used with few number of
basis functions. Due to the exponentially convergence nature of the method,
one can get the considerable good results with small error. The illustrated
example shows the efficiency and accuracy of presented method.
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